Hierarchical Clustering Approach with Hybrid Genetic Algorithm for Combinatorial Optimization Problems
نویسندگان
چکیده
Engineering field has inherently many combinatorial optimization problems which are hard to solve in some definite interval of time especially when input size is big. Although traditional algorithms yield most optimal answers, they need large amount of time to solve the problems. A new branch of algorithms known as evolutionary algorithms solve these problems in less time. Such algorithms have landed themselves for solving combinatorial optimization problems independently, but alone they have not proved efficient. However, these algorithms can be joined with each other and new hybrid algorithms can be designed and further analyzed. In this paper, hierarchical clustering technique is merged with IAMB-GA with Catfish-PSO algorithm, which is a hybrid genetic algorithm. Clustering is done for reducing problem into sub problems and effectively solving it. Results taken with different cluster sizes and compared with hybrid algorithm clearly show that hierarchical clustering with hybrid GA is more effective in obtaining optimal answers than hybrid GA alone.
منابع مشابه
A hybrid metaheuristic using fuzzy greedy search operator for combinatorial optimization with specific reference to the travelling salesman problem
We describe a hybrid meta-heuristic algorithm for combinatorial optimization problems with a specific reference to the travelling salesman problem (TSP). The method is a combination of a genetic algorithm (GA) and greedy randomized adaptive search procedure (GRASP). A new adaptive fuzzy a greedy search operator is developed for this hybrid method. Computational experiments using a wide range of...
متن کاملTabu-KM: A Hybrid Clustering Algorithm Based on Tabu Search Approach
The clustering problem under the criterion of minimum sum of squares is a non-convex and non-linear program, which possesses many locally optimal values, resulting that its solution often falls into these trap and therefore cannot converge to global optima solution. In this paper, an efficient hybrid optimization algorithm is developed for solving this problem, called Tabu-KM. It gathers the ...
متن کاملA hybrid algorithm optimization approach for machine loading problem in flexible manufacturing system
The production planning problem of flexible manufacturing system (FMS) concerns with decisions that have to be made before an FMS begins to produce parts according to a given production plan during an upcoming planning horizon. The main aspect of production planning deals with machine loading problem in which selection of a subset of jobs to be manufactured and assignment of their operations to...
متن کاملAn optimization technique for vendor selection with quantity discounts using Genetic Algorithm
Vendor selection decisions are complicated by the fact that various conflicting multi-objective factors must be considered in the decision making process. The problem of vendor selection becomes still more compli-cated with the inclusion of incremental discount pricing schedule. Such hard combinatorial problems when solved using meta heuristics produce near optimal solutions. This paper propose...
متن کاملA new metaheuristic genetic-based placement algorithm for 2D strip packing
Given a container of fixed width, infinite height and a set of rectangular block, the 2D-strip packing problem consists of orthogonally placing all the rectangles such that the height is minimized. The position is subject to confinement of no overlapping of blocks. The problem is a complex NP-hard combinatorial optimization, thus a heuristic based on genetic algorithm is proposed to solve it. I...
متن کامل